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Abstract
Modern portfolio theory is based on a rational investor
choosing the proportions of assets in a portfolio so as to
minimize risk and maximize the expected return.  In this
paper, we investigate the applicability of different
stochastic search heuristics to the problem of finding the
optimum portfolio. We compare their performance on two
problems with known solutions.

1. Portfolio Optimization
Given a set of assets, what is the optimum proportion of
each that is required to achieve an investment objective?
Modern portfolio theory is based on a rational investor
choosing these proportions so as to minimize risk and
maximize the expected return.  If risk is measured in
terms of the variance of the resulting portfolio, then
portfolio optimization is reduced to a “means-variance
paradigm” —  the optimal portfolio can be derived by
knowing the expectations of returns and correlations of
returuns for all assets.

Using vector notation from linear algebra, in its simplest
form, the portfolio problem is to

Find a vector w = (w1, ...wn)
that maximizes the return/risk ratio

 [r • w]_________
(wT • C • w)1/2

subject to constraints

mk = wk = Mk, k=1,...,n
and ( |w1| + |w2| + ... + |wn| ) = 1

The vector w defines the portfolio: the set of weights that
represent the proportion of each asset.  Vector r is the

vector of expected returns for the assets.  C is a symmetric
n-by-n matrix that represents the covariance beteween the
returns: c(i,j) is the return covariance between the returns
of asset i and asset j:

c(i,j) = σi σj ρij

where ρij is the correlation coefficient between the returns
for asset i and asset j, and σi is the standard deviation of
return on asset i.  These quantities must be measured
statistically.  If short sales are allowed in this portfolio
then the mimimal constraints mk can be negative.  In this
case, the absolute value constraints follow the definition of
Lintner short sales [1].  Any portfolio w that satisfies the
constraints is a feasible solution to the problem.  The goal
is to find the best feasible solution.

It is important to note that the above problem can be
generalized to include “nonstandard” measures of return
or risk, such as geometric return or partial moments, and
other types of constraints, such as asset sector limitations.

The portfolio problem represented in the above form is a
quadratic programming problem, which can be solved by
traditional methods which are variations of the revised
simplex linear programming algorithm or gradient-search
(hill-climbing) techniques.  For some portfolios, these
methods may take a long time to solve and, because of the
constraints imposed by the problem, may be awkward to
initialize to a feasible solution.  For example, the simplex
algorithm for linear programming exhibits exponential
complexity for the worst-case, and polynomial complexity
for the average case [2].

Stochastic search algorithms are useful for applications
where stable and acceptable (ie, near optimal) answers are
desired quickly.  In general, stochastic search algorithms
do not require knowledge of a derivative (as in gradient-
search methods) and perform best with highly nonlinear
or highly combinatorial problems.  Even though their
worst-case behavior is also exponential, their average



performance to yield acceptable answers may be quadratic
[2].  In this paper, we investigate the applicability of three
different heuristics, some having been inspired by
biological processes, and compare their performance on
two problems with known solutions.

2.  Example Problems
Problem A is a simple textbook problem with three assets
[1].  There are three assets: the returns and covariance
matrix are

Covariance 
Returns A1 A2 A3

14 A1 36 9 18
8 A2 9 9 18

20 A3 18 18 225

The constraints are 0=wk =1 together with the

summation equality constraint kw∑ = 1.  The
theoretical optimum solution is w = (14/18, 1/18,
3/18) with Return/Risk ~ 1.66.

Problem B was discussed in [3] and reflects a real example
for allocating assets among US and foreign bonds.  The
returns and covariance matrix for these assets are

Covariance
U.S. Canada German Japan U.K. Dutch French

9.75 U.S. 126 115 64.93 56.7 69 63.5 48.8
10.03 Canada 115 195 94.34 71.7 106 85.4 72.7

9.81 German 64.9 94.3 261.8 179 161 236 201
15.42 Japan 56.7 71.7 178.7 300 154 169 166
12.57 U.K. 69 106 160.9 154 335 149 127
10.48 Dutch 63.5 85.4 236.1 169 149 230 191
10.09 French 48.8 72.7 201.2 166 127 191 200

The constraints are 0=wk =1 together with the summation

equality constraint kw∑ = 1.  An optimal solution,

computed by traditional methods is w = (0.55, 0.0, 0.0,
0.34, 0.09, 0.0, 0.02), with Return/Risk ~ 1.1054.

3. Genetic Algorithm Solution
Genetic algorithms are biologically inspired maximization
stochastic heuristics, based on a method that randomly
selects two potential solutions from a population of
potential solutions, and “breeds” them to create children
solutions.  A “steady-state” genetic algorithm keeps the
population a fixed size: the “worst” solutions in the
population are then replaced by the children solutions.

Genetic algorithm techniques and “breeding” operations
were originally defined to maximize “fitness”  functions of
binary arguments.  Many of these breeding operations can
be extended to other representations, such as integers, real
numbers, and permutations.

For the portfolio problem, the population consists of a set
of vectors {w}, each w corresponding to a feasible
portfolio.  The genetic algorithm operations for real
numbers (based on [4]) are crossover, coarse tuning, fine
tuning, average, and mutation, each with fixed operator
probabilities and fixed probabilities that are used to
determine which set of weights that the operator will be
applied.  The operators are adjusted so that they generate a
random feasible solution.  After  each iteration, one or
more of the breeding operators are selected, and applied to
a two randomly selected parents, whose selection
probability is proportional to the Return/Risk ratio that is
to be maximized (the “fitness” or objective function).

Problems A and B were both solved using GenSheet, a
commercially available genetic algorithm package.  For
Problem A, the population started converging to the
optimal solution (to two decimal place accuracy) in 10
generations.  For Problem B, after generating the
following randomly generated population...

U.S. Canada German Japan U.K. Dutch French RET RISK Ret/Risk
0.06 0.09 0.185 0.2 0.21 0.12 0.14 11.628 12.748 0.9122
0.11 0.03 0.193 0.09 0.17 0.15 0.24 10.992 12.626 0.8705
0.06 0.21 0.084 0.26 0 0.18 0.2 11.483 12.152 0.9449
0.03 0.04 0.058 0.22 0.34 0.25 0.05 12.197 13.489 0.9042
0.16 0.11 0.129 0.16 0.15 0.11 0.17 11.263 11.755 0.9581
0.18 0.01 0.226 0.19 0.17 0.12 0.11 11.438 12.392 0.923
0.1 0.26 0.067 0.23 0.26 0.07 0.02 11.913 12.02 0.9911

0.19 0.16 0.041 0.18 0.26 0.11 0.06 11.665 11.65 1.0013
0.19 0.1 0.092 0.01 0.27 0.09 0.24 10.76 11.709 0.919
0.1 0.15 0.235 0.18 0.01 0.06 0.28 10.96 12.262 0.8939

0.19 0.05 0.2 0.22 0.2 0.14 0.01 11.687 12.206 0.9575
0.07 0.24 0.209 0.2 0.2 0 0.08 11.527 12.058 0.9559

...the population started converging to the optimal solution
(to two decimal place accuracy) in 100 generations:

U.S. Canada German Japan U.K. Dutch French RET RISK Ret/Risk
0.56 0 0 0.27 0.17 0 0 11.776 10.751 1.0954
0.53 0.03 0 0.32 0.03 0 0.09 11.692 10.638 1.099
0.56 0.01 0 0.25 0.14 0.03 0.02 11.562 10.57 1.0938
0.56 0.01 0 0.24 0.16 0 0.03 11.582 10.597 1.0929
0.6 0.02 0 0.26 0 0.09 0.03 11.311 10.459 1.0814

0.48 0.04 0 0.23 0.14 0 0.11 11.522 10.551 1.092
0.6 0.02 0 0.26 0.1 0 0.03 11.506 10.486 1.0973
0.6 0.02 0 0.26 0.1 0 0.03 11.506 10.486 1.0973
0.6 0.02 0 0.26 0.1 0 0.03 11.506 10.486 1.0973

0.48 0.04 0 0.23 0.14 0 0.11 11.522 10.551 1.092
0.48 0.04 0 0.23 0.14 0 0.11 11.522 10.551 1.092
0.56 0.01 0 0.25 0.14 0.03 0.02 11.562 10.57 1.0938

4.  Simulated Annealing
The Metropolis algorithm [2] simulates the evolution of a
physical system in contact with a heat-bath as it is
observed at random times.  Lowering the temperature



results in freezing the randomized behavior of the physical
system, so it approaches a ground or “annealed” state.  In
operation, the Metropolis algorithm assumes an “energy”
function f(x) is defined on a state x. We generates a new
state xi from an old state xj randomly, and accept the new
state if f(xj) - f(xi) = 0; otherwise we accept xi with
probability P, where

P = exp(- [f(xj) - f(xi)]/T )

This expression is based on a heuristic derived from the
Boltzmann probability distribution of thermodynamics.
As T approaches zero, the “randomization” becomes
frozen:  the optimal final state is reached.  In the
Metropolis simulated annealing algorithm, this is
accomplished with an “annealing schedule” that for each
iteration, generates a sequence Tk that converges to zero.
At zero temperature, there are no random solutions
generated.

For the portfolio problem, the simulated annealing states
correspond to feasible portfolios.  The function f is just the
Return/Risk ratio.  At each iteration, the algorithm
randomly selects a set of  asset weights to change, and
generates a random feasible solution.  The initial fixed
temperatures updated by the annealing schedule T :=
.9*T.

After each iteration, new solutions are evaluated and
accepted with respect to the Boltzmann probability
distribution.  For Problem A, the portfolio converging to
the optimal solution (to two decimal place accuracy) in 56
iterations.  For Problem B, the portfolio started converging
to the optimal solution (to two decimal place accuracy) in
379 iterations.

5.  Dynamic Search Space Reduction
This heuristic finds the optimal solution to a nonlinear
optimization problem by reducing the size of the search
region dynamically.  After generating a random feasible
solution w,  the algorithm, generates a new vector wnew
from a random number R, with

wnew = w + g
where g =  [M - m]*R
and M = (M1, ..., Mn),
and m = (m1, ..., mn).

If wnew is not feasible then a new wnew is generated.

For Problem A, the portfolio converging to the optimal
solution (to two decimal place accuracy) in 18 iterations.
For Problem B, the portfolio started converging to the
optimal solution (to two decimal place accuracy) in 115
iterations.

6.  Discussion
Simulated annealing was the poorest performer of the
three stochastic search methods for the portfolio problem.
This may be because of too much “randomization”
required in the algorithm: the weights are too sensitive to
randomized changes because of the constraints.  The
genetic algorithm and dynamic search space reduction
algorithm had similar performance.  Both heuristics are
similar and are more sensitive to the constraints.  Because
of its emphasis on population convergence, the genetic
algorithm identified alternate solutions better than the
other two algorithms.

In general, the difficulty in all optimization techniques
concerns the constraints, ie, in generating a feasible
solution.  Stochastic search techniques seem to live up to
their promise in generating acceptable solutions quickly,
even with complicated constraints and objective functions.

For Problem B, both algorithms took less than a second to
execute. Informal studies indicate that for larger portfolios
(200 to 1000 assets), execution times for acceptable non-
optimal solutions scale up quadratically.  We are now
investigating parallel implementations of stochastic search
algorithms for very large portfolios.
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