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A. Background

Using simulation to solve systems of stochastic differential equations is based on creating
a discrete version of the system.  In other words, we approximate

dr  =  (m - L) dt + S • dZ

by a discrete version of the stochastic differential equation, e.g. the following Euler
scheme

∆r   =  (m - L) t∆ + S • ∆Z
where

∆Z  = t∆ < N1, … , Nk >

and Nj denotes a set of independent, identically distributed standard zero-mean unit
variance gaussian random variables. Here r, dr, ∆r , m, and L are n-vectors; S is the n x k
diffusion matrix (k is the number of factors in the model; n is the order of the model), and
• denotes the usual vector inner product.

Given an initial value r(0) = ro, the solution evolves as we compute the values of r for
0,  ,  2 ,  3 ... ,t t t t n t T= ∆ ∆ ∆ ∆ = :

r(t+ t∆ ) = r(t) + ( )t∆r

Given these values, a specific function of r(t), can be computed for each path. for
example, for a single factor interest rate model (k =1), the bond price is computed by
integration
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This integation can be approximated as a discrete sum by a variety of methods.  Given a
set of N paths, the expected value of the bond price is approximated by
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We can estimate standard deviation of the bond price as well.  The accuracy of these
estimates depend on the stepsize t∆ used in the discrete version of the stochastic
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differential equations and the number of scenarios N.   The error is approximately o( t∆ )
and 1( )

N
o respectively.

The random gaussian vector ∆Z is generated by a variety of Monte Carlo techniques.
These techniques typically rely on a method for generating uniformly distributed random
numbers and then transforming these numbers into a gaussian distribution.  For a single
factor model, this amounts to creating an algorithm that "randomly" picks numbers in the
interval [0, 1]; for a multi-factor model, the algorithm picks "random" numbers from a k-
dimensional box.

B.  Random Number Generation

QRA incorporates several random number generation techniques, grouped into whether
they are pseudo random or quasi random.  (For a detailed discussion, see the monographs
by Niederreiter and by Tezuka.)

Pseudo random generators are designed to maximize their period (the time when numbers
start repeating) and minimize the serial correlation between sets of numbers. They are
usually based on linear congruential algorithms, using integer multiplication and division
by a large prime number (i.e., finding remainders modulo p).

Quasi random generators are designed simply to fill the space in an interval more
uniformly than uncorrelated random points.  They are usually based on Laurent series
expansions over finite fields.  Their advantage is in multi-dimensional spaces: they fill
higher dimensional boxes more efficiently than other methods.  In a more formal sense,
using quasi random generators can reduce the error associated with a simulation from

1( )
N

o to 1( )No .

QRA provides the following pseudo random and quasi random generators:

• L'Ecuyer (pseudo random)
A long period generator based on linear congruential algorithm that can generate
approximately 1018 pseudo random scalar numbers.

• Knuth (pseudo random)
A variant of the linear congruential method, based on a subtractive algorithm.

• Faure-Niederreiter (quasi random)
Generates low discepancy p-vector sequences using monic irreducable prime
polynomials over the field of integers modulo p.  QRA pre-computes the irreducable
prime polynomials and uses matrix multiplication modulo p to generate the
sequences.



Simulation Techniques for SDEs - 3 - Inductive Solutions, Inc.
Technical Note info@inductive.com

• Faure-Niederreiter-Tezuka (quasi random)
A variation of Faure-Niederreiter that uses a different expression for matrix
multiplication.

• Sobol'-Niederreiter (quasi random)
Generates low discepancy p-vector sequences using monic irreducable prime
polynomials over the field of integers modulo 2. (These polynomials were pre-
computed and saved up to dimension 5000, to increase efficiency of the generator.)

• Richtmeyer (quasi random)
Generates low discepancy sequences based on roots of prime numbers. (These roots
were pre-computed and saved up to dimension 5000, to increase efficiency of the
generator.)

All QRA quasi random generators are configured to generate at most 109 quasi random
vectors of at most 5,000 dimensions.

The algorithm used to transform these pseudo-random or quasi random numbers into a
gaussian distribution is based on a fast series expansion of the inverse of the cumulative
normal density function.

B. Error Reduction

Error reduction from the o( t∆ ) requires a scheme that results in stable solutions. For
example, Talay has shown that the Euler scheme is more stable then other "higher order"
schemes (i.e,. those of order o( 2t∆ )  and higher) that involve higher order Taylor series
approximations to the differential.

One way to reduce the error is use quasi-random numbers in generating the sets of
gaussian random variables.

Another way is in creating a Brownian Bridge (see Morokoff et al) to essentially modify
the regions of integration.

QRA supports both of these methods. It supports the four quasi random number
generation methods and uses a Brownian Bridge interpolation scheme in integration.


